一个欧拉级数的证明

创建时间 2020-12-16
更新时间 2020-12-16

\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}

证明:

f(x) = |x|,在 x\in [-\pi, \pi] 上展开成傅里叶级数。

\begin{aligned} f(x) =& \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos nx \\ a_0 =& \frac{2}{\pi}\int_0^\pi x dx \\ =& \frac{1}{\pi}x^2 \bigg|_0^\pi\\ =& \pi\\ a_n =& \frac{2}{\pi}\int_0^\pi x\cos nx dx \\ =& \frac{2}{\pi n^2}\int_0^\pi nx\cos nx dnx \\ =& \frac{2}{\pi n^2}(nx\sin nx + \cos nx)\bigg|_0^\pi \\ =& \frac{2}{\pi n^2}[(-1)^n - 1] \\ f(0) =& \frac{\pi}{2} + \frac{2}{\pi}\sum_{n=1}^\infty \frac{1}{n^2}[(-1)^n - 1] \\ =& \frac{\pi}{2} + \frac{-4}{\pi} \sum_{n=1}^\infty \frac{1}{(2n - 1)^2} = 0 \\ \frac{\pi^2}{8} =& \sum_{n=1}^\infty \frac{1}{(2n - 1)^2}\\ & \sum_{n=1}^\infty \frac{1}{(2n)^2} = \frac{1}{4}\sum_{n=1}^\infty \frac{1}{n^2} \\ =& \sum_{n=1}^\infty \frac{1}{n^2} - \frac{\pi^2}{8} \\ & \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6} \end{aligned}

证毕。