UpdateTime 2021-11-30

2006年全国硕士研究生招生考试数学一试题 一、填空题(本题共 6 小题,每小题 4 分,共 24 分) (1) \displaystyle \lim_{x \to 0} {x\ln(1 + x) \over 1 - \cos x} =\displaystyle \lim_{x \to 0} {x\ln(1 + x) \over 1 - \cos x} = _____ (2) 微分方程 \displaystyle y' = {y (1 - x) \over x}\displaystyle y' =

UpdateTime 2021-11-30

2004年全国硕士研究生招生考试数学一试题 一、填空题(本题共 6 小题,每小题 4 分,共 24 分) (1) 曲线 y= \ln xy= \ln x 上与直线 x+y=1x+y=1 垂直的切线方程为 _____ (2) 已知 f'(e^x)= xe^{-x}f'(e^x)= xe^{-x},且 f(1) = 0f(1) = 0,则 f(x)=f(x)= _____ (3) 设 LL 为正向圆周 x^2 + y^2 = 2x^2 + y^2 = 2 在第一象限中的部分,则曲线积分 \display

UpdateTime 2021-11-30

2003年全国硕士研究生招生考试数学一试题 一、填空题(本题共 6 小题,每小题 4 分,共 24 分) (1) \displaystyle \lim_{x\to 0} (\cos x)^{1 \over \ln(1 + x^2)}=\displaystyle \lim_{x\to 0} (\cos x)^{1 \over \ln(1 + x^2)}= _____ (2) 曲面 z = x^2 + y^2z = x^2 + y^2 与平面 2x + 4y - z = 02x + 4y - z = 0

UpdateTime 2021-11-20

2002年全国硕士研究生招生考试数学一试题 一、填空题(本题共 5 小题,每小题 3 分,共 15 分) (1) \displaystyle \int_e^{+\infty} {dx \over x \ln^2 x} =\displaystyle \int_e^{+\infty} {dx \over x \ln^2 x} = _____ (2) 已知 e^y+ 6xy+ x^2 - 1=0e^y+ 6xy+ x^2 - 1=0,则 y''(0)=y''(0)= _____ (3) yy'' + y'

UpdateTime 2021-11-20

2001年全国硕士研究生招生考试数学一试题 一、填空题(本题共 5 小题,每小题 3 分,共 15 分) (1) 设 y = e^x(C_1 \sin x + C_2 \cos x)y = e^x(C_1 \sin x + C_2 \cos x) (C_1,C_2C_1,C_2 为任意常数) 为某二阶常系数线性齐次微分方程的通解,则该方程为 _____ (2) r =\sqrt{x^2+y^2 +z^2}r =\sqrt{x^2+y^2 +z^2},则 \displaystyle {\rm div}

UpdateTime 2021-11-14

1999年全国硕士研究生招生考试数学一试题 一、填空题(本题共 5 小题,每小题 3 分,共 15 分) (1) \displaystyle \lim_{x\to 0} \left({1 \over x^2} - {1 \over x\tan x}\right)=\displaystyle \lim_{x\to 0} \left({1 \over x^2} - {1 \over x\tan x}\right)= _____ (2) \displaystyle {d \over dx} \int_0^x

UpdateTime 2021-11-14

2000年全国硕士研究生招生考试数学一试题 一、填空题(本题共 5 小题,每小题 3 分,共 15 分) (1) \displaystyle\int_0^1 \sqrt{2x -x^2} dx=\displaystyle\int_0^1 \sqrt{2x -x^2} dx= _____ (2) 曲面 x^2 + 2y^2 + 3z^2 = 21x^2 + 2y^2 + 3z^2 = 21 在点 (1,-2,-2)(1,-2,-2) 的法线方程为 _____ (3) 微分方程 xy'' + 3y'=

UpdateTime 2021-11-10

1997年全国硕士研究生招生考试数学一试题 一、填空题(本题共 5 小题,每小题 3 分,共 15 分) (1) \displaystyle \lim_{x \to 0} {\displaystyle 3\sin x+ x^2 \cos {1 \over x}\over (1+ \cos x) \ln(1 + x)}=\displaystyle \lim_{x \to 0} {\displaystyle 3\sin x+ x^2 \cos {1 \over x}\over (1+ \cos x) \ln

UpdateTime 2021-11-10

1998年全国硕士研究生招生考试数学一试题 一、填空题(本题共 5 小题,每小题 3 分,共 15 分) (1) \displaystyle \lim_{x \to 0} {\sqrt{1 + x} + \sqrt{1 - x} - 2 \over x^2}=\displaystyle \lim_{x \to 0} {\sqrt{1 + x} + \sqrt{1 - x} - 2 \over x^2}= _____ (2) 设 \displaystyle z={1 \over x}f(xy)+ y\v

UpdateTime 2021-11-06

1996年全国硕士研究生招生考试数学一试题 一、填空题(本题共 5 小题,每小题 3 分,共 15 分) (1) 设 \displaystyle \lim_{x\to \infty} \left({x+2a \over x -a }\right)^x =8\displaystyle \lim_{x\to \infty} \left({x+2a \over x -a }\right)^x =8,则 a=a= _____ (2) 设一平面经过原点及点 (6,-3,2)(6,-3,2),且与平面 4x-y+