中值定理辅助函数类型

创建时间 2020-11-23
更新时间 2020-11-24

辅助函数表格

中值等式 G(\xi) = 0 辅助函数 F(x)
\displaystyle\frac{f'(x)}{f(x)} = 0 \ln f(x)
f'(\xi) + A\xi^k + B = 0 \displaystyle f(x) + \frac{Ax^{k+1}}{k+1} + Bx
f(a)g'(\xi)-f'(\xi)g(a) - k = 0 f(a)g(x) - f(x)g(a) - kx
\displaystyle\sum_{i=0}^{n-1}a_i(n-i)\xi^{n-1-i} = 0 \displaystyle\sum_{i=0}^{n-1}a_i x^{n-i}
f'(\xi)g(\xi) + f(\xi)g'(\xi) = 0 f(x)g(x)
f(\xi)g''(\xi) - f''(\xi)g(\xi) = 0 f(x)g'(x) - f'(x)g(x)
\xi f'(\xi) + kf(\xi) = 0 x^kf(x)
(\xi - 1)f'(\xi) + kf(\xi) = 0 (x-1)^kf(x)
f'(\xi)g(1-\xi) - kf(\xi)g'(1-\xi) = 0 g^k(1-x)f(x)
f'(\xi) + \lambda f(\xi) = 0 e^{\lambda x}f(x)
f'(\xi) + g'(\xi)f(\xi) = 0 e^{g(x)}f(x)
\xi f'(\xi) - kf(\xi) = 0 \displaystyle\frac{f(x)}{x^k}
f'(\xi) - kf(\xi) = 0 \displaystyle\frac{f(x)}{e^{kx}}
\displaystyle f(\xi) + \frac{x - b}{a}f'(\xi) = 0 (x - b)^a f(x)
f'(\xi)g(\xi) - f(\xi)g'(\xi) = 0 \displaystyle\frac{f(x)}{g(x)}
\displaystyle\frac{1-\xi^2}{(1+ \xi^2)^2} = 0 \displaystyle\frac{x}{1+x^2}
f'(\xi) - f(\xi) + k\xi - k = 0 \displaystyle\frac{f(x) - kx}{e^{x}}
f''(\xi) + f'(\xi) - k = 0 e^x[f'(x) - k]
f'(\xi) + k[f(\xi)-\xi] -1 = 0 e^{kx}[f(x) - x]
f''(\xi) - f(\xi) = 0 e^x[f(x) - f'(x)]

证明


\begin{aligned} &\frac{f'(x)}{f(x)} = 0 \\ &\int \frac{f'(x)}{f(x)} dx \\ =& \int \frac{df(x)}{f(x)} \\ =& \ln f(x) \\ &F(x) = \ln f(x) \end{aligned}

\begin{aligned} &f'(x) + Ax^k + B =0\\ &\int f'(x) + Ax^k + B dx \\ &= f(x) + \frac{Ax^{k+1}}{k+1} + Bx \\ &F(x) = f(x) + \frac{Ax^{k+1}}{k+1} + Bx \end{aligned}

\begin{aligned} &f(a)g'(x) - f'(x)g(a) - k = 0 \\ &\int f(a)g'(x) - f'(x)g(a) - k dx \\& = f(a)g(x) - f(x)g(a) -kx \\ &F(x) = f(a)g(x) - f(x)g(a) -kx \end{aligned}

\begin{aligned} &\sum_{i=0}^{n-1}a_i(n-i)x^{n-1-i} = 0 \\ &\int \sum_{i=0}^{n-1}a_i(n-i)x^{n-1-i} dx = \sum_{i=0}a_ix^{n-i} \\ &F(x) = \sum_{i=0}a_ix^{n-i} \end{aligned}

\begin{aligned} f'(x)g(x) + f(x)g'(x) &= 0 \\ \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} &= 0 \\ [\ln f(x) + \ln g(x)]' &= 0 \\ [\ln f(x)\cdot g(x)]' &= 0 \\ F(x) = f(x)\cdot g(x) \\ \end{aligned}

\begin{aligned} f(x)g''(x) - f''(x)g(x) &= 0 \\ f(x)g''(x) - f'(x)g'(x) \\ + f'(x)g'(x) - f''(x)g(x) &= 0 \\ [f(x)g''(x) + f'(x)g'(x)] \\ - [f'(x)g'(x) + f''(x)g(x)] &= 0 \\ [f(x)g'(x)]' - [f'(x)g(x)]' &= 0 \\ [f(x)g'(x) - f'(x)g(x)]' &= 0 \\ F(x) = f(x)g'(x) - f'(x)g(x) \\ \end{aligned}

\begin{aligned} xf'(x) + kf(x) &= 0 \\ \frac{f'(x)}{f(x)} + \frac{k}{x} &= 0 \\ [\ln f(x) + k\ln x]' &= 0 \\ [\ln f(x) + \ln x^k]' &= 0 \\ [\ln f(x)x^k]' &= 0 \\ F(x) = x^k f(x) \\ \end{aligned}

\begin{aligned} (x-1)f'(x) + kf(x) &= 0 \\ \frac{f'(x)}{f(x)} + \frac{k}{x-1} &= 0 \\ [\ln f(x) + k\ln (x-1)]' &= 0 \\ [\ln f(x) + \ln (x-1)^k]' &= 0 \\ [\ln f(x)(x-1)^k]' &= 0 \\ F(x) = (x-1)^k f(x) \\ \end{aligned}

\begin{aligned} f'(x)g(1-x) + kf(x)g'(1-x) &= 0 \\ \frac{f'(x)}{f(x)} + k\frac{g'(1-x)}{g(1-x)} &= 0 \\ [\ln f(x) + k\ln g(1-x)]' &= 0 \\ [\ln f(x) + \ln g^k(1-x)]' &= 0 \\ [\ln f(x)g^k(1-x)]' &= 0 \\ F(x) = g^k(1-x) f(x) \\ \end{aligned}

\begin{aligned} f'(x) + \lambda f(x) &= 0 \\ \frac{f'(x)}{f(x)} + \lambda &= 0 \\ [\ln f(x) + \lambda x]' &= 0 \\ [\ln f(x) + \ln e^{\lambda x}]' &= 0 \\ [\ln e^{\lambda x} f(x)]' &= 0 \\ F(x) = e^{\lambda x} f(x) \end{aligned}

\begin{aligned} f'(x) + g'(x)f(x) &= 0 \\ \frac{f'(x)}{f(x)} + g'(x) &= 0 \\ [\ln f(x) + g(x)]' &= 0 \\ [\ln f(x) + \ln e^{g(x)}]' &= 0 \\ [\ln e^{g(x)}f(x)]' &= 0 \\ F(x) = e^{g(x)}f(x) \\ \end{aligned}

\begin{aligned} xf'(x) - kf(x) &= 0 \\ \frac{f'(x)}{f(x)} - \frac{k}{x} &= 0 \\ [\ln f(x) - k\ln x]' &= 0 \\ [\ln \frac{f(x)}{x^k}]' &= 0 \\ F(x) = \frac{f(x)}{x^k} \end{aligned}

\begin{aligned} f'(x) - kf(x) &= 0 \\ \frac{f'(x)}{f(x)} - k &= 0 \\ [\ln f(x) - kx]' &= 0 \\ [\ln \frac{f(x)}{e^{kx}}]' &= 0 \\ F(x) = \frac{f(x)}{e^{kx}} \end{aligned}

\begin{aligned} f(x) + \frac{x-b}{a}f'(x) &= 0 \\ \frac{a}{x-b} + \frac{f'(x)}{f(x)} &= 0 \\ [a\ln(x-b) + \ln f(x)]' &= 0 \\ [\ln (x-b)^af(x)]' &=0\\ F(x) = (x-b)^af(x) \end{aligned}

\begin{aligned} f'(x)g(x) - f(x)g'(x) &= 0 \\ \frac{f'(x)}{f(x)} -\frac{g'(x)}{g(x)} &= 0 \\ [\ln f(x) - \ln g(x)]' &= 0 \\ [\ln \frac{f(x)}{g(x)}]' &= 0 \\ F(x) = \frac{f(x)}{g(x)} \end{aligned}

\begin{aligned} &\frac{1-x^2}{(1+x^2)^2} = 0 \\ & \int \frac{1-x^2}{(1+x^2)^2} dx \\ \xlongequal{x=\tan u}&\int \frac{1 - \tan^2 u}{\sec ^ 2 u} du \\ =&\int \cos^2 u - \sin^2 u \ du \\ =&\int \frac{1 + \cos 2u}{2} - \frac{1 - \cos 2u}{2} \ du \\ =&\int \cos 2u \ du \\ =& \frac{1}{2} \int \cos 2u \ d2u \\ =& \frac{1}{2} \sin 2u \\ =& \cos u \cdot \sin u \\ =& \frac{1}{\sqrt{1 + x^2}} \cdot \frac{x}{\sqrt{1 + x^2}} \\ =& \frac{x}{1 + x^2} \\ & F(x) = \frac{x}{1 + x^2} \end{aligned}

\begin{aligned} f'(x) - f(x) + kx - k &= 0 \\ [f'(x) - k] - [f(x) - kx] &= 0 \\ g'(x) - g(x) \xlongequal{g(x)=f(x) - kx} 0 \\ \frac{g'(x)}{g(x)} - 1 &= 0 \\ [\ln g(x) - x]' &= 0 \\ [\ln g(x) - \ln e^x]' &= 0 \\ [\ln \frac{g(x)}{e^x}]' &= 0 \\ F(x) = \frac{g(x)}{e^x} = \frac{f(x) - kx}{e^x} \\ \end{aligned}

\begin{aligned} f''(x) + f'(x) - k &= 0 \\ [f''(x) - 0] + [f'(x) - k] & = 0 \\ g'(x) + g(x) \xlongequal{g(x)=f'(x) - k} 0 \\ \frac{g'(x)}{g(x)} + 1 &= 0 \\ [\ln g(x) + x]' &= 0 \\ [\ln g(x) + \ln e^x]' &= 0 \\ [\ln g(x)e^x]' &= 0 \\ F(x) = g(x)e^x = e^x[f'(x) - k] \\ \end{aligned}

\begin{aligned} f'(x) + k[f(x) - x] - 1 &= 0 \\ [f'(x) - 1] + k[f(x) - x] &= 0 \\ g'(x) + kg(x) \xlongequal{g(x)=f(x) - x} 0 \\ \frac{g'(x)}{g(x)} + k &= 0 \\ [\ln g(x) + kx]' &= 0 \\ [\ln g(x) + \ln e^{kx}]' &= 0 \\ [\ln g(x)e^{kx}]' &= 0 \\ F(x) = g(x)e^{kx} = e^{kx}[f(x) - x] \\ \end{aligned}

\begin{aligned} f''(x) - f(x) &= 0 \\ [f''(x) - f'(x)] + [f'(x) - f(x)] & = 0 \\ g'(x) + g(x) \xlongequal{g(x)=f'(x) - f(x)} 0 \\ \frac{g'(x)}{g(x)} + 1 &= 0 \\ [\ln g(x) + x]' &= 0 \\ [\ln g(x) + \ln e^x]' &= 0 \\ [\ln g(x)e^x]' &= 0 \\ F(x) = g(x)e^x = e^x[f'(x) - f(x)] \\ \end{aligned}